
Markov Decision Process 

Markov Property: In probability theory and statistics, the term Markov Property 

refers to the memoryless property of a stochastic — or randomly determined — 

process. 

Markov Chain: A Markov Chain is a stochastic model describing a sequence of 

possible events in which the probability of each event depends only on the state 

attained in the previous event. 

Expanding on the Markov Property 

To deepen our understanding of the Markov Property, we can view it as follows: 

P(X(t+1)=j|X(0)=i0,X(1)=i1,…,X(t)=i)=P(X(t+1)=j|X(t)=i) 

Put in words, the formula represents a situation in which the state of X at 

time t+1 only depends on one preceding state of X at time t, and is independent of 

past states X(t−1), …, X(1). 

Now let’s shed more light on this with a simple example. 

In string “easy”, according to Markov Property, we have: 

 

 

 P(x3=y | x0=e, x1=a, x2=s) represents the probability that y appears at time 3 

when e appears at time 0, a appears at time 1 and s appears at time 2 

 P(x3=y|x2=s) represents the probability that y appears at time 3 

when s appears at time 2 

So, in the above equation, Markov Property makes the P(easy) easier to compute 

with the assumption that y only depends on the previous neighbor state s and is 

independent of e and a. It means that when y in “easy” is generated, we only care 

about the transition probability from s to y instead of the transition probability 

from eas to y. 

Of course, we know it may not work like this in the real world, but the hypothesis is 

useful nonetheless. It helps us make complicated situations computable and most of 

the time it works quite well. 

Understanding the Markov Chain 

When we put the Markov Property to work in a random process, we call it a Markov 

Chain. 

https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_chain


 

Here is the formulated definition of a Markov Chain: 

 

Using Figure 1 above, we can demonstrate how a Markov Chain can generate 

words. 

Assume we start separately from state e, a, and t, with the respective probability of 

40%, 30%, and 30%. According to Markov Property, a string can be generated letter 

by letter — taking into consideration only the letter immediately before it. 

For example, we have a 40% probability of starting with e at time 0. Then we move 

from state e to state a at time 1 to get ea. To arrive at the word eat, we move directly 

from state a to state t at time 2, without regard for the earlier state e. 

 

With the above computations, we can see that this Markov Chain 

gives eat and tea an equally high score, while aet gets the lowest score. The formula 

indicates that eat and tea are more like words, while aet appears not to be one at all. 

Defining The Markov Decision Process (MDP) 



Recall our discussion of the Markov Chain, which works with S, a set of states, 

and P, the probability of transitioning from one to the next. It also uses the Markov 

Property, meaning each state depends only on the one immediately prior to it. 

 

Figure 2: An example of the Markov decision process 

Now, the Markov Decision Process differs from the Markov Chain in that it 

brings actions into play. This means the next state is related not only to the current 

state itself but also to the actions taken in the current state. Moreover, in MDP, some 

actions that correspond to a state can return rewards. 

In fact, the aim of MDP is to train an agent to find a policy that will return the 

maximum cumulative rewards from taking a series of actions in one or more states. 

Here’s a formulated definition, which is what you’ll probably get if you google Markov 

Decision Process: 

 

Now, let’s apply this framework to Figure 2 above for a more concrete understanding 

of these abstract notes: 

 



▶️ MDP in Action: Learning with Adam 

We can make this even easier to grasp with a story, using Adam as our example. As 

we know, this hard-working young man wants to make as much money as he can. 

Using the framework defined above, we can help him do just that. 

▶️ When Adam’s state is Tired, he can choose one of three actions: (1) continue 

working, (2) go to the gym, and (3) get some sleep. 

If he chooses to work, he remains in the Tired state with the certainty of getting a 

+20 reward. if he chooses to sleep, he has 80% of moving to the next 

state, Energetic, and a 20% chance of staying Tired. 

If he doesn’t want to sleep, he may go to the gym and do a workout. This gives him a 

50% chance of entering the Energetic state and a 50% chance of staying Tired. 

However, he needs to pay for the gym, so this choice results in a -10 reward. 

▶️ When Adam becomes Energetic, he can go back to work and be more efficient. 

From there, he has an 80% chance of getting Tired again (with a +40 reward), and a 

20% chance of staying Energetic (with a +30 reward). 

Sometimes, when he is Energetic, he wants to do a workout. When he exercises in 

this state, he has a good time and gets 100% getting Healthier. Of course, he needs 

to pay for it with a -10 reward. 

▶️ Once he arrives at the state Healthier, there is only one thing on his mind: earn 

more money by doing more work. Because he is in such a good state, he works at 

peak efficiency, earns a +100 reward, and keeps working until he gets tired again. 

With the above information, we can train an agent aimed at helping Adam find the 

best policy to maximize his rewards over time. This agent will undertake a Markov 

Decision Process. 

However, before we can do that, we need to know how to compute the cumulative 

reward when an action is taken in one state. That is to say, we must be able to 

estimate the state value. 

Don’t worry! This will only take a minute to cover. 

Discounted Reward 

Reinforcement Learning is a multi-decision process. Unlike the “one instance, one 

prediction” model of supervised learning, an RL agent’s target is to maximize the 

cumulative rewards of a series of decisions — not simply the immediate reward from 

one decision. 

It requires the agent to look into the future while simultaneously collecting current 

rewards. 

In Adam’s example above, future rewards are as important as current rewards. But in 

the CartPole game we discussed here, surviving in the present is more important 

than anything else. 

https://medium.com/ai%C2%B3-theory-practice-business/reinforcement-learning-part-1-a-brief-introduction-a53a849771cf


Because future rewards can be valued differently depending on the scenario, we 

need a mechanism to discount the importance of future rewards at different time 

steps. 

 

The above symbol for a discounted rate or factor is the key to this mechanism. The 

rewards computed by it are referred to as discounted rewards. 

 

Consider the information above. If the discount rate is close to 0, future rewards 

won’t count for much in comparison to immediate rewards. In contrast, if the discount 

rate is close to 1, rewards that are far in the future will be almost as important as 

immediate rewards. 

In short, discounted reward how we estimate the value of a state. 

 

 

 Dynamic Programming (DP): introduced in our discussion of MDP 

 Monte-Carlo (MC) learning: to adapt when information is lacking 

 The simplest Temporal Difference learning, TD(0): a combination of DP 

and MC 

 

MDP and Dynamic Programming 

 dynamic programming: breaking a large problem down into incremental 

steps so optimal solutions to sub-problems can be found at any given stage 

 model: a mathematical representation of a real-world process  

 Bellman Optimality Equation: gives us the means to estimate the optimal 

value of each state   

Now it’s important to note that MDP only works with a known model, in which all five 

tuples (shown below) are evident. 



 

 

We will enter into solving an MDP problem when part of the model is unknown. 

In this case, our agent must learn from the environment by interacting with it and 

collecting experiences, or samples. In doing so, the agent carries out strategy 

evaluation and iteration and can obtain the optimal strategy. 

Since the theory to support this approach comes from the Monte-Carlo method, let’s 

start by discussing Monte Carlo learning. 

  



 

Monte-Carlo Learning 

Entire problem can be transformed into a Markov Decision Process (MDP), which 

makes decisions with the five tuples < s, P, a, R, γ > above. 

When we know all five, it’s easy to calculate an optimal strategy to get the maximum 

reward. However, in the real world, we almost never have all of this information at 

the same time. 

For example, the state transition probability (P) is difficult to know and, without it, we 

can’t use the Bellman Equation below to solve V and Q values. 

 

 

But what if we have to solve a problem without knowing P? How can we transform it 

into a Markov Decision Process? 

First, consider that although we don’t know what the state transition probability P is, 

we do know objectively that it exists. Therefore, we simply have to find it. 

To do so, we can have our agent run trials, constantly collecting samples, getting 

rewards, and thereby evaluating the value function. This is exactly how the Monte-

Carlo method works: try many times, and the final estimated V value will be very 

close to the real V value. 

Monte-Carlo Evaluation 

As mentioned, the Monte-Carlo method involves letting an agent learn from the 

environment by interacting with it and collecting samples. This is equivalent to 

sampling from the probability distribution P(s, a, s’) and R(s, a). 

However, Monte-Carlo (MC) estimation is only for trial-based learning. In other 

words, an MDP without the P tuple can learn by trial-and-error, through many 

repetitions. 

In this learning process, each “try” is called an episode, and all episodes must 

terminate. That is, the final state of the MDP should be reached. Values for each 

state are updated only based on final reward Gt, not on estimations of neighbor 

states — as occurs in the Bellman Optimality Equation. 

MC learns from complete episodes and is therefore only suitable for what we 

call episodic MDP. 



Here is our updated state value formula: 

 

In which: 

 V(St) is the state value that we are going to estimate, which can be initialized 

randomly or with a certain strategy. 

 

 Gt is calculated above, T is the terminate time. 

 is a parameter like learning rate. It can influence the convergence. 

Various Methods to Get V(St) 

Consider this: If the state s appears twice in an episode at time t + 1 and time t + 

2 respectively, do we use one or both when calculating the value of the state s? And 

how often do we updateV(St)? Our answers to these questions will leads us to 

different approaches: 

 First-Visit Monte-Carlo Policy Evaluation 

With policy ( could be a random policy just as we used in previous articles) for each 

episode, only the first time that the agent arrives at S counts: 

 

 EverEvery-Visit Monte-Carlo Policy Evaluation 

With policy (could be a random policy just as we used in previous articles) for each 

episode, every time that the agent arrives at S counts: 

 

 Incremental Monte-Carlo Updates 

For each state St in the episode, there is a reward Gt, and for every time St appears, 

the average value of the state, V(St) is calculated by the following formula: 



 

Temporal-Difference Learning 

The Monte-Carlo reinforcement learning algorithm overcomes the difficulty of 

strategy estimation caused by an unknown model. However, a disadvantage is that 

the strategy can only be updated after the whole episode. 

In other words, the Monte Carlo method does not make full use of the MDP learning 

task structure. Luckily, that’s where the more efficient Temporal-Difference (TD) 

method comes in, making full use of the MDP structure. 

Temporal-Difference Learning: A Combination of Deep Programming and 

Monte Carlo 

As we know, the Monte Carlo method requires waiting until the end of the episode to 

determine V(St). The Temporal-Difference or TD method, on the other hand, only 

needs to wait until the next time step. 

That is, at time t + 1, the TD method uses the observed reward Rt+1and immediately 

forms a TD target R(t+1)+V(St+1), updating V(St) with TD error (which we’ll define 

below). 

Having addressed the shortcomings of Monte Carlo, we’re ready to further discuss 

Temporal-Difference learning. The famous Q-learning algorithm falls within the TD 

method, but let’s start with the simplest one, called TD (0). 

TD (0) 

In Monte-Carlo, Gt is an actual return from the complete episode. Now, if we replace 

Gt with an estimated return R(t+1)+V(St+1), this is what TD(0) would look like: 

 

Where: 

 R(t+1)+V(St+1) is called TD target value 

 R(t+1)+V(St+1)- V(St）is called TD error. 

MC uses accurate return Gt to update value, while TD uses the Bellman Optimality 

Equation to estimate value, and then updates the estimated value with the target 

value. 

  



 

 

Temporal-Difference Learning: TD(λ) 

We mentioned that if we replace Gt in the MC-updated formula with an estimated 

return Rt+1+V(St+1), we can get TD(0): 

 

Where: 

 Rt+1+V(St+1) is called TD target value 

 Rt+1+V(St+1)- V(St）is called TD error 

Now, we replace the TD target value with Gt(), we can have TD(λ). Gt()is generated 

as below: 

 

So the TD(λ) formula is: 

 

In which: 

 

As discussed, Q-learning is a combination of Monte Carlo (MC) and Temporal 

Difference (TD) learning. With MC and TD(0) covered and TD(λ) now under our 

belts, we’re finally ready to pull out the big guns! 

  



Q-Learning 

Q-Value formula: 

 

From the above, we can see that Q-learning is directly derived from TD(0). For each 

updated step, Q-learning adopts a greedy method: maxaQ (St+1, a). 

This is the main difference between Q-learning and another TD-based method called 

Sarsa, which I won’t explain in this series. But as an RL learner, you should know 

that Q-learning is not the only method based on TD. 

An Example of How Q-Learning Works 

Let’s try to understand this better with an example: 

You’re having dinner with friends at an Italian restaurant and, because you’ve been 

here once or twice before, they want you to order. From experience, you know that 

the Margherita pizza and pasta Bolognese are delicious. So if you have to order ten 

dishes, experience might tell you to order five of each. But what about everything 

else on the menu? 

In this scenario, you are like our “agent”, tasked with finding the best combination of 

ten dishes. Imagine this becomes a weekly dinner; you’d probably start bringing a 

notebook to record information about each dish. In Q-learning, the agent collects Q-

values in a Q-table. For the restaurant menu, you could think of these values as a 

score for each dish. 

Now let’s say your party is back at the restaurant for the third time. You’ve got a bit of 

information in your notebook now but you certainly haven’t explored the whole menu 

yet. How do you decide how many dishes to order from your notes — which you 

know are good, and how many new ones to try? 

This is where ε-greedy comes into play. 

The ε-greedy Exploration Policy 

In the above example, what happened in the restaurant is like our MDP (Markov 

Decision Process) and you, as our “agent” can only succeed in finding the best 

combination of dishes for your party if you explore it thoroughly enough. 

So it is with Q-Learning: it can work only if the agent explores the MDP thoroughly 

enough. Of course, this would take an extremely long time. Can you imagine how 

many times you’d have to go back to the restaurant to try every dish on the menu in 

every combination? 

This is why Q-learning uses the ε-greedy policy, which is ε degree “greedy” for the 

highest Q values and 1 — ε degree “greedy” for random exploration. 

https://medium.com/ai%C2%B3-theory-practice-business/reinforcement-learning-part-3-the-markov-decision-process-9f5066e073a2
https://medium.com/ai%C2%B3-theory-practice-business/reinforcement-learning-part-3-the-markov-decision-process-9f5066e073a2


In the initial stages of training an agent, a random exploration environment (i.e. trying 

new things on the menu) is often better than a fixed behavior mode (i.e. ordering 

what you already know is good) because this is when the agent accumulates 

experience and fills up the Q-table. 

Thus, it’s common to start with a high value for ε, such as 1.0. This means the agent 

will spend 100% of its time exploring (e.g. using a random policy) instead of referring 

to the Q-table. 

From there, the value of ε can be gradually decreased, making the agent more 

greedy for Q-values. For example, if we drop ε to 0.9, it means the agent will spend 

90% of its time choosing the best strategy based on Q-table, and 10% of its time 

exploring the unknown. 

The advantage of the ε-greedy policy, compared to a completely greedy one, is that 

it always keeps testing unknown regions of the MDP. Even when the target policy 

seems optimal, the algorithm never stops exploring: it just keeps getting better and 

better. 

There are various functions for exploration, and many defined exploration policies 

can be found online. Do note that not all exploration policies are expected to work for 

both discrete and continuous action spaces. 

 


