
Markov Decision Process

Markov Property: In probability theory and statistics, the term Markov Property

refers to the memoryless property of a stochastic — or randomly determined —

process.

Markov Chain: A Markov Chain is a stochastic model describing a sequence of

possible events in which the probability of each event depends only on the state

attained in the previous event.

Expanding on the Markov Property

To deepen our understanding of the Markov Property, we can view it as follows:

P(X(t+1)=j|X(0)=i0,X(1)=i1,…,X(t)=i)=P(X(t+1)=j|X(t)=i)

Put in words, the formula represents a situation in which the state of X at

time t+1 only depends on one preceding state of X at time t, and is independent of

past states X(t−1), …, X(1).

Now let’s shed more light on this with a simple example.

In string “easy”, according to Markov Property, we have:

 P(x3=y | x0=e, x1=a, x2=s) represents the probability that y appears at time 3

when e appears at time 0, a appears at time 1 and s appears at time 2

 P(x3=y|x2=s) represents the probability that y appears at time 3

when s appears at time 2

So, in the above equation, Markov Property makes the P(easy) easier to compute

with the assumption that y only depends on the previous neighbor state s and is

independent of e and a. It means that when y in “easy” is generated, we only care

about the transition probability from s to y instead of the transition probability

from eas to y.

Of course, we know it may not work like this in the real world, but the hypothesis is

useful nonetheless. It helps us make complicated situations computable and most of

the time it works quite well.

Understanding the Markov Chain

When we put the Markov Property to work in a random process, we call it a Markov

Chain.

https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_chain

Here is the formulated definition of a Markov Chain:

Using Figure 1 above, we can demonstrate how a Markov Chain can generate

words.

Assume we start separately from state e, a, and t, with the respective probability of

40%, 30%, and 30%. According to Markov Property, a string can be generated letter

by letter — taking into consideration only the letter immediately before it.

For example, we have a 40% probability of starting with e at time 0. Then we move

from state e to state a at time 1 to get ea. To arrive at the word eat, we move directly

from state a to state t at time 2, without regard for the earlier state e.

With the above computations, we can see that this Markov Chain

gives eat and tea an equally high score, while aet gets the lowest score. The formula

indicates that eat and tea are more like words, while aet appears not to be one at all.

Defining The Markov Decision Process (MDP)

Recall our discussion of the Markov Chain, which works with S, a set of states,

and P, the probability of transitioning from one to the next. It also uses the Markov

Property, meaning each state depends only on the one immediately prior to it.

Figure 2: An example of the Markov decision process

Now, the Markov Decision Process differs from the Markov Chain in that it

brings actions into play. This means the next state is related not only to the current

state itself but also to the actions taken in the current state. Moreover, in MDP, some

actions that correspond to a state can return rewards.

In fact, the aim of MDP is to train an agent to find a policy that will return the

maximum cumulative rewards from taking a series of actions in one or more states.

Here’s a formulated definition, which is what you’ll probably get if you google Markov

Decision Process:

Now, let’s apply this framework to Figure 2 above for a more concrete understanding

of these abstract notes:

▶️ MDP in Action: Learning with Adam

We can make this even easier to grasp with a story, using Adam as our example. As

we know, this hard-working young man wants to make as much money as he can.

Using the framework defined above, we can help him do just that.

▶️ When Adam’s state is Tired, he can choose one of three actions: (1) continue

working, (2) go to the gym, and (3) get some sleep.

If he chooses to work, he remains in the Tired state with the certainty of getting a

+20 reward. if he chooses to sleep, he has 80% of moving to the next

state, Energetic, and a 20% chance of staying Tired.

If he doesn’t want to sleep, he may go to the gym and do a workout. This gives him a

50% chance of entering the Energetic state and a 50% chance of staying Tired.

However, he needs to pay for the gym, so this choice results in a -10 reward.

▶️ When Adam becomes Energetic, he can go back to work and be more efficient.

From there, he has an 80% chance of getting Tired again (with a +40 reward), and a

20% chance of staying Energetic (with a +30 reward).

Sometimes, when he is Energetic, he wants to do a workout. When he exercises in

this state, he has a good time and gets 100% getting Healthier. Of course, he needs

to pay for it with a -10 reward.

▶️ Once he arrives at the state Healthier, there is only one thing on his mind: earn

more money by doing more work. Because he is in such a good state, he works at

peak efficiency, earns a +100 reward, and keeps working until he gets tired again.

With the above information, we can train an agent aimed at helping Adam find the

best policy to maximize his rewards over time. This agent will undertake a Markov

Decision Process.

However, before we can do that, we need to know how to compute the cumulative

reward when an action is taken in one state. That is to say, we must be able to

estimate the state value.

Don’t worry! This will only take a minute to cover.

Discounted Reward

Reinforcement Learning is a multi-decision process. Unlike the “one instance, one

prediction” model of supervised learning, an RL agent’s target is to maximize the

cumulative rewards of a series of decisions — not simply the immediate reward from

one decision.

It requires the agent to look into the future while simultaneously collecting current

rewards.

In Adam’s example above, future rewards are as important as current rewards. But in

the CartPole game we discussed here, surviving in the present is more important

than anything else.

https://medium.com/ai%C2%B3-theory-practice-business/reinforcement-learning-part-1-a-brief-introduction-a53a849771cf

Because future rewards can be valued differently depending on the scenario, we

need a mechanism to discount the importance of future rewards at different time

steps.

The above symbol for a discounted rate or factor is the key to this mechanism. The

rewards computed by it are referred to as discounted rewards.

Consider the information above. If the discount rate is close to 0, future rewards

won’t count for much in comparison to immediate rewards. In contrast, if the discount

rate is close to 1, rewards that are far in the future will be almost as important as

immediate rewards.

In short, discounted reward how we estimate the value of a state.

 Dynamic Programming (DP): introduced in our discussion of MDP

 Monte-Carlo (MC) learning: to adapt when information is lacking

 The simplest Temporal Difference learning, TD(0): a combination of DP

and MC

MDP and Dynamic Programming

 dynamic programming: breaking a large problem down into incremental

steps so optimal solutions to sub-problems can be found at any given stage

 model: a mathematical representation of a real-world process

 Bellman Optimality Equation: gives us the means to estimate the optimal

value of each state

Now it’s important to note that MDP only works with a known model, in which all five

tuples (shown below) are evident.

We will enter into solving an MDP problem when part of the model is unknown.

In this case, our agent must learn from the environment by interacting with it and

collecting experiences, or samples. In doing so, the agent carries out strategy

evaluation and iteration and can obtain the optimal strategy.

Since the theory to support this approach comes from the Monte-Carlo method, let’s

start by discussing Monte Carlo learning.

Monte-Carlo Learning

Entire problem can be transformed into a Markov Decision Process (MDP), which

makes decisions with the five tuples < s, P, a, R, γ > above.

When we know all five, it’s easy to calculate an optimal strategy to get the maximum

reward. However, in the real world, we almost never have all of this information at

the same time.

For example, the state transition probability (P) is difficult to know and, without it, we

can’t use the Bellman Equation below to solve V and Q values.

But what if we have to solve a problem without knowing P? How can we transform it

into a Markov Decision Process?

First, consider that although we don’t know what the state transition probability P is,

we do know objectively that it exists. Therefore, we simply have to find it.

To do so, we can have our agent run trials, constantly collecting samples, getting

rewards, and thereby evaluating the value function. This is exactly how the Monte-

Carlo method works: try many times, and the final estimated V value will be very

close to the real V value.

Monte-Carlo Evaluation

As mentioned, the Monte-Carlo method involves letting an agent learn from the

environment by interacting with it and collecting samples. This is equivalent to

sampling from the probability distribution P(s, a, s’) and R(s, a).

However, Monte-Carlo (MC) estimation is only for trial-based learning. In other

words, an MDP without the P tuple can learn by trial-and-error, through many

repetitions.

In this learning process, each “try” is called an episode, and all episodes must

terminate. That is, the final state of the MDP should be reached. Values for each

state are updated only based on final reward Gt, not on estimations of neighbor

states — as occurs in the Bellman Optimality Equation.

MC learns from complete episodes and is therefore only suitable for what we

call episodic MDP.

Here is our updated state value formula:

In which:

 V(St) is the state value that we are going to estimate, which can be initialized

randomly or with a certain strategy.

 Gt is calculated above, T is the terminate time.

 is a parameter like learning rate. It can influence the convergence.

Various Methods to Get V(St)

Consider this: If the state s appears twice in an episode at time t + 1 and time t +

2 respectively, do we use one or both when calculating the value of the state s? And

how often do we updateV(St)? Our answers to these questions will leads us to

different approaches:

 First-Visit Monte-Carlo Policy Evaluation

With policy (could be a random policy just as we used in previous articles) for each

episode, only the first time that the agent arrives at S counts:

 EverEvery-Visit Monte-Carlo Policy Evaluation

With policy (could be a random policy just as we used in previous articles) for each

episode, every time that the agent arrives at S counts:

 Incremental Monte-Carlo Updates

For each state St in the episode, there is a reward Gt, and for every time St appears,

the average value of the state, V(St) is calculated by the following formula:

Temporal-Difference Learning

The Monte-Carlo reinforcement learning algorithm overcomes the difficulty of

strategy estimation caused by an unknown model. However, a disadvantage is that

the strategy can only be updated after the whole episode.

In other words, the Monte Carlo method does not make full use of the MDP learning

task structure. Luckily, that’s where the more efficient Temporal-Difference (TD)

method comes in, making full use of the MDP structure.

Temporal-Difference Learning: A Combination of Deep Programming and

Monte Carlo

As we know, the Monte Carlo method requires waiting until the end of the episode to

determine V(St). The Temporal-Difference or TD method, on the other hand, only

needs to wait until the next time step.

That is, at time t + 1, the TD method uses the observed reward Rt+1and immediately

forms a TD target R(t+1)+V(St+1), updating V(St) with TD error (which we’ll define

below).

Having addressed the shortcomings of Monte Carlo, we’re ready to further discuss

Temporal-Difference learning. The famous Q-learning algorithm falls within the TD

method, but let’s start with the simplest one, called TD (0).

TD (0)

In Monte-Carlo, Gt is an actual return from the complete episode. Now, if we replace

Gt with an estimated return R(t+1)+V(St+1), this is what TD(0) would look like:

Where:

 R(t+1)+V(St+1) is called TD target value

 R(t+1)+V(St+1)- V(St）is called TD error.

MC uses accurate return Gt to update value, while TD uses the Bellman Optimality

Equation to estimate value, and then updates the estimated value with the target

value.

Temporal-Difference Learning: TD(λ)

We mentioned that if we replace Gt in the MC-updated formula with an estimated

return Rt+1+V(St+1), we can get TD(0):

Where:

 Rt+1+V(St+1) is called TD target value

 Rt+1+V(St+1)- V(St）is called TD error

Now, we replace the TD target value with Gt(), we can have TD(λ). Gt()is generated

as below:

So the TD(λ) formula is:

In which:

As discussed, Q-learning is a combination of Monte Carlo (MC) and Temporal

Difference (TD) learning. With MC and TD(0) covered and TD(λ) now under our

belts, we’re finally ready to pull out the big guns!

Q-Learning

Q-Value formula:

From the above, we can see that Q-learning is directly derived from TD(0). For each

updated step, Q-learning adopts a greedy method: maxaQ (St+1, a).

This is the main difference between Q-learning and another TD-based method called

Sarsa, which I won’t explain in this series. But as an RL learner, you should know

that Q-learning is not the only method based on TD.

An Example of How Q-Learning Works

Let’s try to understand this better with an example:

You’re having dinner with friends at an Italian restaurant and, because you’ve been

here once or twice before, they want you to order. From experience, you know that

the Margherita pizza and pasta Bolognese are delicious. So if you have to order ten

dishes, experience might tell you to order five of each. But what about everything

else on the menu?

In this scenario, you are like our “agent”, tasked with finding the best combination of

ten dishes. Imagine this becomes a weekly dinner; you’d probably start bringing a

notebook to record information about each dish. In Q-learning, the agent collects Q-

values in a Q-table. For the restaurant menu, you could think of these values as a

score for each dish.

Now let’s say your party is back at the restaurant for the third time. You’ve got a bit of

information in your notebook now but you certainly haven’t explored the whole menu

yet. How do you decide how many dishes to order from your notes — which you

know are good, and how many new ones to try?

This is where ε-greedy comes into play.

The ε-greedy Exploration Policy

In the above example, what happened in the restaurant is like our MDP (Markov

Decision Process) and you, as our “agent” can only succeed in finding the best

combination of dishes for your party if you explore it thoroughly enough.

So it is with Q-Learning: it can work only if the agent explores the MDP thoroughly

enough. Of course, this would take an extremely long time. Can you imagine how

many times you’d have to go back to the restaurant to try every dish on the menu in

every combination?

This is why Q-learning uses the ε-greedy policy, which is ε degree “greedy” for the

highest Q values and 1 — ε degree “greedy” for random exploration.

https://medium.com/ai%C2%B3-theory-practice-business/reinforcement-learning-part-3-the-markov-decision-process-9f5066e073a2
https://medium.com/ai%C2%B3-theory-practice-business/reinforcement-learning-part-3-the-markov-decision-process-9f5066e073a2

In the initial stages of training an agent, a random exploration environment (i.e. trying

new things on the menu) is often better than a fixed behavior mode (i.e. ordering

what you already know is good) because this is when the agent accumulates

experience and fills up the Q-table.

Thus, it’s common to start with a high value for ε, such as 1.0. This means the agent

will spend 100% of its time exploring (e.g. using a random policy) instead of referring

to the Q-table.

From there, the value of ε can be gradually decreased, making the agent more

greedy for Q-values. For example, if we drop ε to 0.9, it means the agent will spend

90% of its time choosing the best strategy based on Q-table, and 10% of its time

exploring the unknown.

The advantage of the ε-greedy policy, compared to a completely greedy one, is that

it always keeps testing unknown regions of the MDP. Even when the target policy

seems optimal, the algorithm never stops exploring: it just keeps getting better and

better.

There are various functions for exploration, and many defined exploration policies

can be found online. Do note that not all exploration policies are expected to work for

both discrete and continuous action spaces.

